Introduction of Structured Learning

Hung-yi Lee

Structured Learning

- We need a more powerful function f
 - Input and output are both objects with structures
 - Object: sequence, list, tree, bounding box ...

X is the space of one kind of object

Y is the space of another kind of object

Example Application

Speech recognition

• X: Speech signal (sequence) → Y: text (sequence)

Translation

 X: Mandarin sentence (sequence) → Y: English sentence (sequence)

Syntactic Paring

• X: sentence $\rightarrow Y$: parsing tree (tree structure)

Object Detection

• X: Image \rightarrow Y: bounding box

Summarization

X: long document → Y: summary (short paragraph)

Retrieval

• X: keyword \rightarrow Y: search result (a list of webpage)

Energy-based Model: http://www.cs.nyu.edu/~yann/research/ebm/

Step 1: Training

Find a function F

$$F: X \times Y \to R$$

• F(x,y): evaluate how compatible the objects x and y is

Step 2: Inference (Testing)

Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

$$f: X \to Y \implies f(x) = \widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

Unified FrameworkObject Detection

24.9m 20.2m

- Task description
 - Using a bounding box to highlight the position of a certain object in an image
 - E.g. A detector of Haruhi

X: Image \longrightarrow Y: Bounding Box

Haruhi
(the girl with yellow ribbon)

Unified Framework– Object Detection

Step 1: Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

y: Bounding Box

$$F(x,y) \longrightarrow F($$

the correctness of taking range of y in x as "Haruhi"

Unified FrameworkObject Detection

Step 1: Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

Step 2: Inference (Testing)

• Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

Enumerate all possible bounding box y

- Summarization

- Task description
 - Given a long document
 - Select a set of sentences from the document, and cascade the sentences to form a short paragraph

- Summarization

Step 1: Training

Step 2: Inference

- Retrieval
- Task description
 - User input a keyword Q
 - System returns a *list* of web pages

A list of web pages (Search Result)

- Retrieval

Statistics

Unified Framework

Step 1: Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

Step 2: Inference

• Given an object x $\widetilde{y} = \arg \max_{y \in Y} F(x, y)$

$$F(x,y) = P(x,y)?$$

Step 1: Training

 Estimate the probability P(x,y)

$$P: X \times Y \rightarrow [0,1]$$

Step 2: Inference

• Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} P(y \mid x)$$

$$= \arg\max_{y \in Y} \frac{P(x, y)}{P(x)}$$

$$= \arg\max_{y \in Y} P(x, y)$$

Statistics

Unified Framework

$$F(x,y) = P(x,y)?$$

Drawback for probability

- Probability cannot explain everything
- 0-1 constraint is not necessary

Strength for probability

Meaningful

Step 1: Training

 Estimate the probability P(x,y)

$$P: X \times Y \rightarrow [0,1]$$

Step 2: Inference

Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} P(y \mid x)$$

$$= \arg\max_{y \in Y} \frac{P(x, y)}{P(x)}$$

$$= \arg\max_{y \in Y} P(x, y)$$

The same as what we have learned.

Link to DNN?

Step 1: Training

$$F: X \times Y \rightarrow R$$

$$F(x,y) = -\|y - N(x)\|^2$$

Step 2: Inference

$$\widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

In handwriting digit classification, there are only 10 possible y.

$$\begin{cases}
y = [1 & 0 & 0 & 0 & \dots] \\
y = [0 & 1 & 0 & 0 & \dots] \\
y = [0 & 0 & 1 & 0 & \dots] \\
\vdots & & & Find max
\end{cases}$$

$$x \longrightarrow F(x,y) \longrightarrow F(x,y)$$

- Solve any tasks by two steps
 - Easier than putting an elephant into a refrigerator

Really? No, we have to answer three problems.

Problem 1

- **Evaluation**: What does F(x,y) look like?
 - How F(x,y) compute the "compatibility" of objects x and y

Object Detection:
$$F(x=)$$
 $y=$ $y=$ Summarization: $F(x=)$ $y=$ $y=$ (a long document)(a short paragraph)

(Search Result)

Problem 2

• Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

The space Y can be extremely large!

Object Detection: Y=All possible bounding box (maybe tractable)

Summarization: Y=All combination of sentence set in a document ...

Retrieval: Y=All possible webpage ranking

Problem 3

Training: Given training data, how to find F(x,y)

Principle

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$$

We should find F(x,y) such that

$$F(x^{1}, \hat{y}^{1}) + F(x^{2}, \hat{y}^{2}) + F(x^{r}, \hat{y}^{r}) + F(x^{r}, \hat{y}^{r}) + F(x^{1}, y)$$
for all $y \neq \hat{y}^{1}$ for all $y \neq \hat{y}^{2}$ $f(x^{r}, y)$ for all $y \neq \hat{y}^{r}$

Three Problems

Problem 1: Evaluation

What does F(x,y) look like?

Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

Problem 3: Training

Given training data, how to find F(x,y)

From 數位語音處理

Preview

Viterbi Algorithm

- 數位語音處理:
 - http://speech.ee.ntu.edu.tw/DSP2015Autumn/Vide os/20150930_4.0.fsp.wmv/index.html (請用 IE 開啟)
 - http://speech.ee.ntu.edu.tw/DSP2015Autumn/Vide os/20151007_4.0.fsp.wmv/index.html (請用 IE 開啟)
- 演算法
- 數位通信相關課程